Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.492
Filter
1.
Journal of Environmental and Occupational Medicine ; (12): 103-109, 2024.
Article in Chinese | WPRIM | ID: wpr-1006464

ABSTRACT

Pollinosis is one of the common allergic diseases, and its morbidity continues to increase. Studies have demonstrated that air pollution is a key environmental factor that leads to the increased prevalence of pollinosis. Air pollutants and pollen allergens exert synergistic effects in stimulating allergic responses in susceptible individuals. In this article, we analyzed the relationship between air pollution and pollinosis based on the latest studies, and elaborated potential mechanisms on how air pollution increases the incidence of pollinosis and aggravates allergic reactions. Air pollutants can increase both pollen production and the levels of allergenic proteins, and enhance allergenicity of pollen allergens through structural alterations or chemical modifications. The potential mechanisms of air pollutants exacerbating pollen allergies are as follows: Air pollutants may disrupt the barrier function of the respiratory epithelium and facilitate the penetration of pollen allergens into deeper tissues. Additionally, they may accelerate the process of the release of pollen allergy-related cytokines, promoting T helper 2 (Th2) cell differentiation and exacerbating inflammatory responses in the airways. Given the limitations of existing research, future prospective studies are needed to explore the effects of mixed pollutants and different types of pollutants on pollen, and the response mechanisms of allergy-related cells and cytokines to different pollutant categories. The findings would provide a comprehensive understanding of the impacts of air pollution on pollen allergies and scientific evidence for effective protection of the heath of pollinosis patients.

2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 289-298, 2024.
Article in Chinese | WPRIM | ID: wpr-1006295

ABSTRACT

Sesquiterpenoids are natural compounds composed of 15 carbon atoms, which can be divided into sesquiterpene alcohols, ketones, lactones, aldehydes, and carboxylic acids according to oxygen groups. These compounds are widely distributed in nature, and their physiological activities are diverse. For example, many sesquiterpenes with potential anticancer effects have been found for anti-tumor effects, including cytotoxicity, antioxidant, immune regulation, cell proliferation, and so on. In addition, some sesquiterpenoids have good application prospects in antibacterial, anti-inflammatory, and anti-cardiovascular diseases. Malignant tumors, inflammation, bacterial diseases, and cardiovascular diseases are the main diseases that cause human death, and natural products have unique advantages in the treatment of these diseases. Therefore, the development of new drugs that are easy to promote has become a new research hotspot. In this paper, the sesquiterpenes extracted from the natural components of Chinese herbs and plants with anti-tumor, anti-inflammatory, antibacterial, and anti-cardiovascular activities, such as Xanthium, Atractylodes, Convolvulus, Acanthium, Ligularia, Artemisia, Ligularia, Ligularia, Labiaceae Mint, Acanthophyllum, Turmeria, Ginger, and other Chinese herbs and plants, were discussed. The biological activities and related mechanisms of this compound were reviewed, which provided a reference for further research and clinical application of sesquiterpenes.

3.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 282-288, 2024.
Article in Chinese | WPRIM | ID: wpr-1006294

ABSTRACT

Gancao Fuzitang originates from the Treatise on Febrile Diseases and Miscellaneous Diseases (《伤寒杂病论》) and is mainly used to treat pain in the bones and joints and symptoms such as no flexion or extension. It has the effect of tonifying the spleen and kidney and removing dampness and turbidity, so it is widely used in the clinical treatment of various bone and joint diseases. This article reviewed the clinical research and mechanism of Gancao Fuzitang in the treatment of bone and joint diseases. The research has found that this prescription has good efficacy in treating bone and joint diseases such as rheumatoid arthritis, rheumatoid arthritis, ankylosing spondylitis, gout, and intervertebral disc herniation. Its mechanism of action may be related to regulating the level of inflammatory factors, antioxidation, and the protein expression of inflammatory and apoptotic cell-related pathways, improving bone and joint diseases, and alleviating related symptoms. This study can provide a reference for further deepening the research on the prevention and treatment of bone and joint diseases with Gancao Fuzitang.

4.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 197-205, 2024.
Article in Chinese | WPRIM | ID: wpr-1006285

ABSTRACT

Diabetic retinopathy(DR) and coronary heart disease(CHD) are both major chronic vascular complications that seriously jeopardize the health of the population and often occur together in clinical practice, it is of great clinical value to actively explore the association between the two in the process of disease development and methods of prevention and treatment of modern medicine and traditional Chinese medicine(TCM). According to TCM, the heart and eyes physiologically communicate with each other by taking Qi, blood and veins as bridges, blood stasis obstructing collaterals is the common TCM etiology of DR and CHD, whose mechanism involves inflammation, oxidative stress and endothelial dysfunction. Promoting blood circulation and removing blood stasis plays an important role in the same treatment for different diseases and prevention and treatment of comorbidities, possibly by inhibiting the expression of interleukin-1β(IL-1β), endothelin-1(ET-1) and hypoxia inducible factor-1α/vascular endothelial growth factor(HIF-1α/VEGF), regulating phosphatidylinositol 3-kinases/protein kinase B/mammalian target of rapamycin(PI3K/Akt/mTOR) pathway, initiating adenosine monophosphate(AMP)-activated protein kinase/silent information regulator 1(AMPK/SIRT1) and nuclear transcription factor erythroid 2-related factor 2/heme oxygenase-1(Nrf2/HO-1) signaling pathways, inhibiting Hippo/Yes-associated protein(Hippo/YAP) signaling pathway, inhibiting mitochondrial permeability transition pore and anti-platelet agglutination for treating DR and CHD, which provides a multi-component, multi-pathway and multi-target selection strategies and ideas for the prevention and treatment of DR and CHD by TCM from a biological perspective. Based on this, subsequent studies should focus on constructing clinically relevant comorbidity models, conducting multicenter prospective studies, and fully utilizing artificial intelligence technology to gain a deeper understanding of the relationship between the two diseases, so as to elucidate the mechanism of promoting blood circulation and removing blood stasis in preventing and treating panvascular diseases.

5.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 88-95, 2024.
Article in Chinese | WPRIM | ID: wpr-1006272

ABSTRACT

ObjectiveThis study observes the intervention effect of Longmu Piyan prescription on oxidative stress in BALB/c mice with atopic dermatitis (AD) induced by 2,4-dinitrochlorobenzene (DNCB) and explores its mechanism. MethodThe AD model was established using the method of DNCB sensitization on the back skin of BALB/c mice. Forty male BALB/c mice were randomly divided into a blank group, a model group, a vitamin C control group (0.5×10-3 mg·kg-1), and a Longmu Piyan prescription group (26 g·kg-1). Except for the blank group, other groups were sensitized with different concentrations of DNCB on the back to induce AD, and the blank group was treated with matrix coating. The gastric administration was started on the seventh day after sensitization with 2% DNCB and on the 24th day after sensitization with 0.2% DNCB continuously for 21 days. The changes in skin lesions of each group were directly observed after the experiment. Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of interleukin (IL)-4, tumor necrosis factor (TNF)-α, immunoglobulin E (IgE), and reactive oxygen species (ROS) in the serum of each group. The total antioxidant capacity determination kit-trace method (ABTS method) was used to measure the level of total antioxidant capacity (TAOC) in serum. The Hematoxylin eosin (HE) staining method was used to observe the pathological and morphological changes of the skin lesion site. The immunohistochemical method was used to detect the expression of thymic stromal lymphopoietin (TSLP) in the skin lesion site. Western blot was used to detect the expression of filaggrin (FLG) in the dorsal skin lesions. ResultThe results showed that compared with the blank group, the skin lesion score of the model group mice was significantly increased (P<0.01), and HE staining showed characteristic pathological changes of AD in the skin lesion site. At the same time, the expression of TSLP in the skin lesion was significantly increased, and that of FLG was reduced (P<0.05). The levels of TNF-α, IL-4, IgE, and ROS in serum increased, while the activity of TAOC decreased (P<0.01). Compared with the model group, the Longmu Piyan prescription group showed a significant decrease in skin lesion scores and a significant improvement in skin lesion pathology. At the same time, the expression of TSLP decreased, and the expression of FLG increased in the skin lesions (P<0.05). In addition, compared with the model group, the serum levels of TNF-α, IL-4, IgE, and ROS also decreased to varying degrees (P<0.05,P<0.01), and TAOC activity increased in the Longmu Piyan prescription group (P<0.01). ConclusionThere is a significant correlation among the degree of oxidative stress, the severity of skin lesions in AD, and the levels of inflammatory cytokines. Longmu Piyandu prescription can improve AD-like skin lesions in BALB/c mice by promoting ROS clearance, enhancing TAOC, and inhibiting oxidative stress, thus protecting the skin barrier and reducing inflammation.

6.
Chinese Journal of Biologicals ; (12): 92-98, 2024.
Article in Chinese | WPRIM | ID: wpr-1006207

ABSTRACT

@#Herpes simplex virus(HSV)is a ubiquitous enveloped virus containing double-stranded DNA. HSV-1 infection can cause inflammation of the lips,conjunctivitis and encephalitis,HSV-2 infection can cause genital herpes at many ages,and both viruses can establish lifelong latent infection in the body. Membrane fusion triggered by the interaction of various HSV membrane proteins is an important way for viruses to enter host cells. This review introduced the conserved core fusion mechanism of HSV composed of four viral glycoproteins gD,gH,gL and gB by analyzing the structure of glycoproteins and their interaction modes. Since there is currently no HSV vaccine approved for marketing in the world,it is of great significance to study the mode of action of HSV and host cells for the development of vaccines

7.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 290-298, 2024.
Article in Chinese | WPRIM | ID: wpr-1005279

ABSTRACT

Osteoporosis (OP) is a common bone disease affecting the quality of life and causing huge medical burden to the patients and society. The occurrence of OP is mainly caused by excessive bone resorption and insufficient bone formation, which are directly influenced by external calcium ion balance. Calcium imbalance can impair bone integrity, reduce the calcium supply to the bone, and lower the calcium content in the bone, thus triggering OP. Drugs are the main anti-OP therapy in modern medicine, which, however, may cause adverse reactions and drug dependence. Chinese medicines have good clinical effects and high safety in treating OP, being suitable for long-term use. Recent studies have shown that Chinese medicines can alleviate estrogen deficiency, regulate bone cell and calcium metabolism, which is crucial for the formation and development of OP. The transient receptor potential cation channel superfamily V members 5 and 6 (TRPV5 and TRPV6, respectively) affect bone homeostasis by mediating the transmembrane calcium ion transport in the intestine (TRPV6) and kidney (TRPV5). Therefore, TRPV5/6 is one of the key targets to understand the anti-OP mechanisms of the effective parts of Chinese medicines, which is worthy of further study. This paper summarizes the research results about the anti-OP effects of Chinese medicines in the last two decades, especially the mechanism of regulating calcium metabolism, aiming to provide new ideas for the basic research, clinical application, and drug development of OP treatment.

8.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 281-289, 2024.
Article in Chinese | WPRIM | ID: wpr-1005278

ABSTRACT

Ulcerative colitis (UC) is a chronic inflammatory bowel disease with complex etiology. The pathogenesis of this disease, due to a combination of factors, is complex and has not yet been elucidated. Among them, intestinal mucosal barrier damage is the basic pathological change of UC. As a non-destructive response of cells, autophagy regulates intestinal mucosal immunity, inflammation, oxidative stress, and bacterial homeostasis through degradation and reabsorption to actively repair damaged intestinal mucosal barrier, exerting a key role in the occurrence and development of UC. The disease is mainly treated clinically with aminosalicylic acid preparations, glucocorticoids, and immunosuppressants. Western medicine treatment of the disease has a fast onset of effect, and the short-term efficacy is definite, but the long-term application is easy to be accompanied by more adverse reactions. Moreover, some drugs are expensive, bringing great physical and mental pain and economic burden to patients. Therefore, it is urgent to explore new therapies with stable efficacy and mild adverse effects. In recent years, a large number of studies have shown that Chinese medicine can regulate autophagy of the intestinal mucosa with multiple targets and effects and repair the intestinal mucosal barrier function, thereby inhibiting the development of UC. Many experiments have shown that the active ingredient or monomers and compound formulas of Chinese medicine can improve the immunity of the intestinal mucosa, inflammation, oxidative stress, and flora by regulating the level of autophagy to maintain the normal function of the intestinal mucosal barrier to effectively intervene in UC, providing a new measure for the prevention and treatment of UC. However, there is a lack of systematic review of Chinese medicine in regulating the level of autophagy in the intestinal mucosa for the prevention and treatment of UC. Therefore, based on the current research on UC, autophagy process, and Chinese medicine treatment, this article reviewed the relationship of autophagy and its key target proteins with UC to clarify the key role of autophagy in UC production and systematically summarized Chinese medicines targeting the regulation of autophagy to treat UC in recent years to provide new ideas for the treatment and drug development of UC.

9.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 228-239, 2024.
Article in Chinese | WPRIM | ID: wpr-1005273

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is one of the most common chronic diseases of the respiratory system in the clinic. The disease has a long course and is difficult to cure, which seriously threatens human health. Airway mucus hypersecretion (AMH) is an independent risk factor for COPD and has a significant impact on the development and prognosis of the disease. The review finds that the abnormal proliferation of goblet cells and the excessive secretion of mucin are the direct causes of AMH. The pathogenesis of AMH may be closely related to the inhalation of heterogeneous particles, airway inflammation, the imbalance of mucin/water salt ratio, and the regulation of related signaling pathways. Traditional Chinese medicine (TCM) believes that AMH of COPD belongs to the category of lung distension with phlegm-fluid retention syndrome, and the disease is mainly treated from phlegm on the basis of lung distension. This article summarizes the relevant research in the field of TCM in recent years and finds that the single TCM that effectively intervened AMH of COPD is mainly phlegm-resolving TCM, and the main active ingredients of TCM are flavonoids, terpenoids, phenols, and alkaloids. The main TCM compounds are mainly designed to remove heat-phlegm, warmly resolve cold-phlegm, dry dampness to eliminate phlegm, invigorate Qi, promote blood circulation and dispel phlegm, and invigorate lung, spleen, and kidney. Its mechanism of action may be direct inhibition or indirect inhibition of airway epithelial goblet cell metaplasia and mucin expression by inhibiting airway inflammation, regulating aquaporins to correct the imbalance of mucin/water salt ratio, and regulating signaling pathways, so as to reduce mucus oversecretion in COPD. However, there are still some problems. For example, the research mainly focuses on TCM compounds instead of the single TCM or its effective components. The research on the mechanism of action is not thorough enough, and the research results are not interoperable. The clinical transformation rate of basic research is insufficient. This article systematically reviews the research status of AMH in the treatment of COPD with TCM and puts forward some thoughts on the existing problems, so as to provide a reference for clinical rational medication and in-depth research.

10.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 166-174, 2024.
Article in Chinese | WPRIM | ID: wpr-1005266

ABSTRACT

ObjectiveMetabolomics was used to reveal the mechanism of Aconiti Lateralis Radix Praeparata(ALRP) in attenuating toxicity by processing from the aspects of amino acid metabolism, oxidative stress and energy metabolism by analyzing multiple metabolic pathways. MethodTwenty-four rats were randomly divided into control group, raw group and processed group, 8 rats in each group. The raw and processed group were given with 0.64 g·kg-1 of raw ALRP and processed ALRP respectively every day, the control group was given with an equal amount of normal saline once a day. After continuous administration for 7 days, the urine, serum and heart tissue of rats were collected. Pathological examination of the heart was carried out using hematoxylin-eosin(HE) staining, and the activities of lactate dehydrogenase(LDH) and creatine kinase-MB(CK-MB) in serum and cardiac tissues were detected by microplate assay and immunoinhibition assay. The effects of ALRP on rat heart before and after processing were compared and analyzed. Ultra performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS) was used to perform urine metabolomics analysis, and multivariate statistical analysis was used to screen for differential metabolites related to ALRP in attenuating toxicity by processing, and pathway enrichment analysis was carried out to explore the processing mechanism. ResultHE staining showed that no obvious pathological changes were observed in the heart tissue of the control group, while obvious infiltration of inflammatory cells such as plasma cells and granulocytes was observed in the heart tissue of the raw group, indicating that the raw ALRP had strong cardiotoxicity. There was no significant difference in HE staining of heart tissue between the processed group and the control group, indicating that the toxicity of ALRP was significantly reduced after processing. Compared with the control group, the activities of LDH and CK-MB were significantly increased in serum and heart tissue of the raw group, and those were significantly decreased in serum and heart tissue of the processed group, suggesting that the myocardial toxicity of processed ALRP was reduced. A total of 108 endogenous differential metabolites associated with the raw ALRP were screened using multivariate statistical analysis in positive and negative modes, of which 51 differential metabolites were back-regulated by the processed ALRP. Biological analysis of the key regulatory pathways and associated network changes showed that the pathways related to toxicity of ALRP mainly included tryptophan metabolism, arginine and proline metabolism, phenylalanine metabolism, aminoacyl-tRNA biosynthesis, alanine, aspartate and glutamate metabolism, etc. The metabolic pathways related to the attenuation of processed ALRP mainly included aminoacyl-tRNA biosynthesis, tryptophan metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism and caffeine metabolism. ConclusionThe processing technology of ALRP in Guilingji can significantly attenuate the cardiotoxicity of raw products, the mechanism mainly involves amino acid metabolism, oxidative stress and energy metabolism, which can provide experimental bases for the research related to the mechanism of toxicity reduction of ALRP by processing and its clinical safety applications.

11.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 290-298, 2024.
Article in Chinese | WPRIM | ID: wpr-1003791

ABSTRACT

A sesquiterpene natural substance called artemisinin was discovered in Artemisia annua. One of its derivatives, artesunate (ART), has the properties of economy, immediate effect, low toxicity, and good tolerance. Since it has a quick and powerful killing effect on plasmodium in the erythrocyte phase and can quickly handle clinical seizure and symptoms, it is currently mostly utilized to treat cerebral malaria and other severe instances of malaria. In addition, it has antitumor, antivirus, anti-hepatic fibrosis, anti-inflammatory, antibacterial, hepatocyte protection, immunological modulation, and other pharmacological properties and can inhibit cell proliferation, induce cell apoptosis, and reduce the incidence of sepsis. In many countries, artemisinin-based combination therapies (ACTs), such as artemether-benflumetol, artesunate-amodiaquine, and artemether-lumefantrine, are the first-line treatments for malaria. Recent research on artesunate by Chinese and international scholars has revealed that compared with monotherapy, artesunate combination therapy offers more benefits in terms of improving pharmacological effects, shortening the duration of medicine, and minimizing adverse effects. Through systematic retrieval of Web of Science Core Collection and integration through CiteSpace (6.2.1) software, this article reviewed the mechanism of artesunate combined with other medications with regard to antimalarial, antitumor, antibacterial, and antiviral features in the previous five years, so as to provide some theoretical basis for rational development and utilization of ART and new drug research and development.

12.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 270-278, 2024.
Article in Chinese | WPRIM | ID: wpr-1003789

ABSTRACT

Fibrosis can occur in diverse tissue and organs and is the common outcome as multiple chronic diseases progress. It is characterized by over-activation of fibroblasts and excessive deposition of extracellular matrix. Targeting transforming growth factor-β (TGF-β), a classical signaling molecule in fibrosis, is currently a routine strategy for drug therapy of this disease. The use of traditional Chinese medicine (TCM) in the treatment of fibrotic diseases has been supported by mature theories. The theories emphasize that the internally-accumulated pathogens and mixed deficiency-excess underlie the shared pathology of fibrotic diseases. Qi stagnation, blood stasis, phlegm turbidity, and mass accumulation are key pathological factors. "Yin suppression by Yang" is the core thought for treatment with TCM of the disease. Pharmacological investigations reveal the scientific nature of TCM in treating fibrotic diseases, namely multilevelled and multitargeted. In other words, it refers to networked regulation of signaling activities of fibrosis-related molecules such as TGF-β/Drosophila protein homolog (Smad), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), Hedgehog, Wnt/β-catenin, and inflammatory cytokines, so as to inhibit fibroblast function and provide a promising insight into novel anti-fibrotic drug. This paper summarized the conventional understanding of fibrotic disease treatment with TCM and its mechanism of action by reviewing ancient literature and modern research reports, which offers an idea for follow-up research in this field.

13.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 258-269, 2024.
Article in Chinese | WPRIM | ID: wpr-1003788

ABSTRACT

Qinghao Biejiatang, first recorded in the Detailed Analysis of Warm Diseases (《温病条辨》) written by WU Jutong in the Qing Dynasty, is composed of Artemisiae Annuae Herba, Trionycis Carapax, Rehmanniae Radix, Anemarrhenae Rhizoma, and Moutan Cortex. With the effects of nourishing Yin and relieving heat, this prescription is often used to treat the syndrome of Yin deficiency and internal heat. The deficiency of healthy Qi, invasion of pathogenic toxins, loss of lung Yin, and generation of deficiency-heat are pathogenesis of lung cancer, pneumonia and other lung diseases, the treatment of which usually follows the principles of nourishing Yin, reinforcing healthy Qi, clearing lung, and eliminating heat. With the effects basically in accordance with the treatment principles of lung diseases, Qinghao Biejiatang is widely used in the treatment of lung diseases such as lung cancer-associated fever, hemoptysis or combined with bone metastasis, tuberculosis, community-acquired pneumonia, and pneumonia caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2). Basic experiments have shown that Qinghao Biejiatang may exert the therapeutic effects by reducing inflammation, maintaining immune balance, regulating intestinal flora, hormone secretion, lipid metabolism, and inhibiting tumor and oxidative damage. In addition, the main active ingredients of this prescription include artemisinin, luteolin, sitosterol, stigmasterol, polysaccharides, catalpol, paeoniflorin, quercetin, paeonol, gallic acid, timosaponin, and mangiferin, which have anti-tumor, anti-oxidant, anti-virus, inflammation-regulating, and immunomodulatory activities. The paper reviewed the clinical and basic studies of Qinghao Biejiatang in the treatment of lung diseases, aming to provide a theoretical basis for the clinical application.

14.
International Eye Science ; (12): 72-76, 2024.
Article in Chinese | WPRIM | ID: wpr-1003509

ABSTRACT

Retinal vein occlusion(RVO), the second most prevalent retinal vascular disease, has complex pathophysiological mechanism. Except for mechanical pressure on blood vessel, inflammation and endothelin have been confirmed to be involved in the pathogenesis of RVO. However, its specific mechanism remains unclear. Hypertension, diabetes and dyslipidemia have been previously shown to be the most common risk factors in elder population, while recent studies found that coagulation and hemorheological abnormalities are more common in people under 50 years old. Ocular risk factors including glaucoma, high corrected intraocular pressure and retinal vessels abnormality, have gained more and more attention. These factors probably exert a synergistic effect when present simultaneously in the same patient. Therefore, early identification and intervention of those factors could lower the incidence of RVO. This article aims to review recent research and summarize existing mechanism and theories, giving some new research ideas for potential therapy targets and providing references for identification and management of risk factors.

15.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 244-253, 2024.
Article in Chinese | WPRIM | ID: wpr-1003429

ABSTRACT

Neuroinflammation is a common pathological feature of neurodegenerative diseases (NDs). Microglia (MG), a resident macrophage in the brain with a unique developmental origin, is the core driver of neuroinflammation. It can participate in the occurrence and development of NDs through different polarization states and play a key role in regulating neurogenesis and synapse shaping and maintaining homeostasis. MG can be divided into M1 pro-inflammatory phenotype and M2 anti-inflammatory phenotype according to its function. The inflammatory mediators released by the M1 phenotype can lead to nerve degeneration and myelin sheath damage, while the activation of the M2 phenotype is required to inhibit the inflammatory response and promote tissue repair. With the advantages of multi-pathway, multi-target, and bidirectional regulation, traditional Chinese medicine can regulate the polarization balance of MG and has dual effects on NDs such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis. The active components of traditional Chinese medicine and its compound can inhibit the activation of MG by regulating phosphatidylinositol-3-kinases/protein kinase B(PI3K/Akt), NOD-like receptor thermal protein domain associated protein 3(NLRP3), signal transducer and activator of transcription factor1(STAT1), nuclear transcription factor kappa B(NF-κB), and other pathways, promote the polarization of M1 phenotype to M2 phenotype, reduce the expression of interleukin(IL)-6, tumor necrosis factor-α(TNF-α), and other pro-inflammatory factors, and increase the secretion of IL-10, arginase-1(Arg-1), and other anti-inflammatory factors. It can also reduce β-amyloid deposition and tau protein expression in Alzheimer's disease, alleviate dopaminergic neuronal damage in Parkinson's disease, and relieve demyelination, inflammatory cell infiltration, and related clinical symptoms of multiple sclerosis. The bidirectional regulation of the M1/M2 polarization balance of MG by traditional Chinese medicine is a potential strategy for the treatment of NDs. This paper focused on the targets of the regulation of MG polarization balance by traditional Chinese medicine monomer and its compound in the treatment of NDs, so as to further study and summarize the existing research results and provide ideas and basis for the future treatment of NDs.

16.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 234-243, 2024.
Article in Chinese | WPRIM | ID: wpr-1003428

ABSTRACT

Liver failure (LF), as a clinical syndrome of severe hepatocyte damage and liver dysfunction, has become a major obstacle to human health due to the triple superposition of high mortality, high morbidity, and high medical resource depletion. It is of great significance to further study the core factors of the disease and supplementary treatment methods to improve the survival rate of patients with LF. The pathogenesis of LF is complex, and mitochondrion is one of the sensitive organelles in hepatocytes and the central link of intracellular energy metabolism. A large number of studies have shown that the structure and function of mitochondria in hepatocytes are changed in LF, and the abnormal structure and function of mitochondria play an important role in the process of LF disease. Among them, multiple factors such as mitochondrial respiratory chain disorder, mitochondrial DNA damage, mitochondrial permeability transition pore opening, mitochondrial quality control imbalance, and mitochondrial oxidative stress are intertwined, forming a complex and unified whole network, which becomes the key node affecting the progression of LF. In recent years, researchers have begun to study drugs that can regulate the function of liver mitochondria to prevent and treat LF. With the deepening of research, traditional Chinese medicine has made breakthroughs in the prevention and treatment of LF. Many studies have confirmed that traditional Chinese medicine can play a role in the prevention and treatment of LF by protecting mitochondrial function, which can be summarized as reducing liver cell damage, inhibiting liver cell death, and promoting liver cell regeneration, so as to effectively compensate for liver function and promote the recovery of liver parenchyma quality and function. This article summarized the structure and function of mitochondria, the relationship between LF and mitochondria, and the research on the intervention of mitochondrial function in the field of traditional Chinese medicine to prevent and treat LF, so as to provide certain ideas and references for the clinical treatment of LF with traditional Chinese medicine.

17.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 179-189, 2024.
Article in Chinese | WPRIM | ID: wpr-1003423

ABSTRACT

Psoraleae Fructus (PF) is a non-toxic Chinese herbal medicine, while the liver injury caused by PF has aroused wide concern in recent years. At present, animal experiments and in vitro studies have been carried out to explore the mechanism, targets, and toxic components of PF in inducing liver injury, which, however, have differences compared with the actual conditions in clinical practice, and there are still some potential hepatotoxic components and targets of PF that have not been discovered. With the continuous progress in systems biology, establishing the drug-induced liver injury model and the liver injury prediction model based on network toxicology can reduce the cost of animal experiments, improve the toxicity prediction efficiency, and provide new tools for predicting toxic components and targets. To systematically explain the characteristics of liver injury in the application of PF and explore the potential hepatotoxic components and targets of PF, we reviewed the related articles published by China National Knowledge Infrastructure (CNKI), Wanfang Data, VIP, and PubMed from 1962 to 2021 and analyzed the characteristics and influencing factors of liver injury caused by PF in the patients. Furthermore, we summarized the chemical components of PF and the components entering blood. By reviewing the mechanism, targets, and components of PF in inducing liver injury that were discovered by in vivo and in vitro experiments, we summarized the known compounds in PF that may cause liver injury. Finally, the current methods for building the prediction model of PF-induced liver injury were summarized, and the predicted toxic components and targets were introduced. The possible factors of PF in causing liver injury were explained from three aspects: clinical characteristics, preclinical studies, and computer-assisted network prediction, which provide a reference for predicting the risk of PF-induced liver injury.

18.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 26-36, 2024.
Article in Chinese | WPRIM | ID: wpr-1003405

ABSTRACT

ObjectiveTo investigate the effect of Yishen Tongluo prescription (YSTLP) on apoptosis of renal tubular epithelial cells and explore the mechanism based on endoplasmic reticulum stress pathway of protein kinase R-like endoplasmic reticulum kinase (PERK)/activating transcription factor 4 (ATF4)/transcription factor C/EBP homologous protein (CHOP). MethodThe db/db mice were randomly divided into model group, valsartan group (10 mg·kg-1), and low, middle, high-dose YSTLP groups (1, 2.5, 5 g·kg-1). Samples were collected after eight weeks of drug intervention. In addition, db/m mice in the same litter served as the control group. Human renal tubular epithelial cells (HK-2) were cultured in vitro and divided into the control group, advanced glycated end-product (AGE) group, and AGE + low, middle, and high-dose YSTLP groups (100, 200, 400 mg·L-1). TdT-mediated dUTP nick end labeling (TUNEL) staining was used to detect the apoptosis rate of HK-2 cells. Methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay was conducted to detect the viability of HK-2 cells. Calcium fluorescence probe staining and luciferase reporter gene method were adopted to detect the luciferase activity of folded protein response element (UPRE) and endoplasmic reticulum stress. Immunohistochemical (IHC) analysis was carried out to measure the protein expressions of phosphorylated PKR (p-PERK), CHOP, and ATF4. Real-time polymerase chain reaction (Real-time PCR) was used to measure the mRNA expression levels of CHOP and X-box binding protein 1 (XBP1) in mouse kidney and HK-2 cells. Western blot was used to detect the protein expression level of p-PERK, PERK, CHOP, ATF4, B-cell lymphoma-2 (Bcl-2), Bcl-2 associated X protein (Bax), and cleaved Caspase-3 in mouse kidney and HK-2 cells. ResultIn the cellular assay, HK-2 cell viability was significantly reduced, and the apoptosis rate was elevated in the AGE group compared with the control group (P<0.01). The mRNA and protein expression levels of apoptosis-related factor Bcl-2 were significantly reduced (P<0.01), and those of Bax were significantly increased (P<0.01). The protein expression level of cleaved Caspase-3 was significantly increased (P<0.01). Compared with the AGE group, YSTLP administration treatment resulted in elevated cell viability and reduced apoptosis rate (P<0.01). The mRNA and protein expression levels of Bcl-2 were significantly elevated in a time- and dose-dependent manner (P<0.01), and those of Bax were significantly reduced in a time- and dose-dependent manner. The protein expression level of cleaved Caspase-3 was significantly reduced in a time- and dose-dependent manner (P<0.01). The intracellular Ca2+ imbalance and UPRE luciferase fluorescence intensity were increased in the AGE group compared with the control group (P<0.01). The mRNA levels of endoplasmic reticulum stress-related factors CHOP and XBP1 were significantly increased (P<0.01), and the protein expression levels of p-PERK, CHOP, and ATF4 were significantly increased (P<0.05). Compared with the AGE group, YSTLP effectively improved intracellular Ca2+ imbalance in HK-2 cells and decreased UPRE luciferase fluorescence intensity in a dose-dependent manner (P<0.01). It reduced the mRNA levels of endoplasmic reticulum stress-related factors CHOP and XBP1 (P<0.01) and the protein expression levels of intracellular p-PERK, CHOP, and ATF4 in a dose- and time-dependent manner (P<0.01). In animal experiments, the protein expression level of Bcl-2 was significantly reduced(P<0.01), and that of cleaved Caspase-3 and Bax was significantly increased in the model group compared with the control group (P<0.05). The protein expression level of Bcl-2 was dose-dependently elevated, and that of cleaved Caspase-3 and Bax was dose-dependently decreased in the YSTLP groups compared with the model group (P<0.01). Compared with the control group, the mRNA expression levels of CHOP and XBP1 were significantly elevated in the model group (P<0.05, P<0.01), and the protein expression levels of p-PERK, CHOP, and ATF4 were significantly increased (P<0.05). Compared with the model group, YSTLP significantly decreased the mRNA expression levels of CHOP and XBP1 (P<0.01) and the protein expression levels of p-PERK, CHOP, and ATF4 (P<0.01). ConclusionYSTLP can effectively inhibit endoplasmic reticulum stress and improve apoptosis of renal tubular epithelial cells, and its mechanism may be related to the regulation of the PERK/AFT4/CHOP pathway.

19.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 286-298, 2024.
Article in Chinese | WPRIM | ID: wpr-999186

ABSTRACT

Gout is a metabolic disease closely associated with hyperuricemia and urate deposition. Because of the complex pathogenesis, high morbidity, multiple complications, and increasingly young patients, gout has received worldwide attention. Currently, western medicine mainly treats gout by lowering the uric acid level and reducing inflammation, which, however, causes serious adverse reactions and has contraindications. Phellodendri Chinensis Cortex (PCC) is the dried bark of Phellodendron chinense, with the effects of clearing heat, drying dampness, purging fire, detoxifying, and treating sores. Studies have shown that PCC and its active components have anti-inflammatory, pain-relieving, uric acid-lowering, and anti-gout activities, with extensive sources and high safety. PCC and its active components could prevent and treat gout through multi-targets and multi-pathways, whereas the systematic review remains to be carried out. Therefore, this paper summarized the pharmacological activities and mechanisms of PCC and its active components in the treatment of gout. The available studies have shown that PCC and its active components exert the anti-gout effect by lowering the uric acid level, reducing inflammation, alleviating oxidative stress, and regulationg intestinal flora, and protecting the kidneys. Particularly, the active components represented by alkaloids contribute obviously to the therapeutic effect of of PCC. Herein, we analyzed the problems and future development of the research on PCC, aiming to provide theoretical support and a scientific basis for the research and development of new drugs against gout.

20.
Bol. méd. Hosp. Infant. Méx ; 80(3): 153-164, May.-Jun. 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1513749

ABSTRACT

Abstract Immunotherapy is one of the most innovative treatments in the current field of oncology and consists of stimulating the immune system to eliminate tumoral cells. Monoclonal antibodies (mAbs) are glycoproteins secreted by B-cells capable of recognizing and neutralizing foreign organisms or antigens. Structurally, they are composed of two heavy and two light chains. The generation of therapeutic mAbs is one of the most developed and fastest-growing areas of the biotechnological and pharmaceutical industries and is an important adjunct to cancer therapy. Several antibodies have been approved for human administration and can be mouse-derived, chimeric, humanized, or fully human. mAbs main mechanism of action includes the lysis of the tumoral cells through inducing apoptosis, phagocytosis, complement activation, or signaling inhibition.


Resumen La inmunoterapia es un tratamiento innovador para la oncología actual, que consiste en la estimulación del sistema inmunitario para la eliminación de las células tumorales. Los anticuerpos monoclonales (mAbs) son glicoproteínas secretadas por los linfocitos B, capaces de reconocer y neutralizar organismos extraños o antígenos. Estructuralmente se componen de dos cadenas pesadas y dos cadenas ligeras. La generación de mAbs terapéuticos es una de las áreas de mayor crecimiento en la industria biotecnológica y farmacéutica y representa un complemento importante en la terapia del cáncer. Existen diversos mAbs que han sido aprobados para su administración en humanos, y pueden ser derivados de ratón, quiméricos, humanizados o completamente humanos. Los mecanismos de acción consisten principalmente en la lisis de las células tumorales a través de la inducción de la apoptosis, fagocitosis, activación del complemento o inhibición de la señalización celular.

SELECTION OF CITATIONS
SEARCH DETAIL